Структурная схема асу тп. Структура распределённой АСУ ТП Составление функциональной схемы и описание основных функциональных узлов асу

Схема является основным документом, поясняющим принцип действия и взаимодействия различных элементов, устройств или в целом систем автоматического управления. Наиболее часто используют принципиальные, функциональные структурные (функциональные) и алгоритмические структурные (структурные) типы схем. Кроме них при проектировании, монтаже, наладке и эксплуатации САУ применяют схемы соединения и подключения (монтажные).

ПРИНЦИПИАЛЬНЫЕ, ФУНКЦИОНАЛЬНЫЕ И СТРУКТУРНЫЕ СХЕМЫ

На принципиальной схеме все элементы системы изображают в соответствии с условными обозначениями во взаимосвязи между собой. Из принципиальной схемы должен быть ясен принцип ее действия и физическая природа происходящих в ней процессов. Принципиальные схемы могут быть электрическими, гидравлическими, пневматическими, кинематическими и комбинированными. На рисунке 1.19 в качестве примера представлены фрагменты принципиальной электрической и принципиальной гидравлической схем.

Элементы автоматики на принципиальных схемах следует обозначать в соответствии со стандартом. Изображение элементов должно соответствовать выключенному состоянию (обесточенному, при отсутствии избыточного давления и т.д.) всех цепей схемы и отсутствию внешних воздействий. Схема должна быть логи-

Рис. 1.19.

а - электрической, б - гидравлической

чески последовательной и читаться слева направо или сверху вниз. Каждому элементу принципиальной схемы присваивают буквенно-цифровое позиционное обозначение. Буквенное обозначение обычно представляет собой сокращенное наименование элемента, а цифровое в порядке возрастания и в определенной последовательности условно показывает нумерацию элемента, считая слева направо или сверху вниз. Для сложных схем, как правило, расшифровывают сокращенные буквенные и цифровые обозначения.

Функциональные структурные схемы отражают взаимодействие устройств, блоков, узлов и элементов автоматики в процессе их работы. Графически отдельные устройства автоматики изображают прямоугольниками, соответствующими направлению прохождения сигнала. Внутреннее содержание каждого блока не конкретизируют. Функциональное назначение блоков обозначают буквенными символами. На рисунке 1.20 в качестве примера представлена функциональная схема САУ температурой воздуха в парнике, где ОУ- объект управления (парник), ВЭ - воспринимающий элемент (датчик температуры), ПЭ - преобразующий


Рис. 1.20. Функциональная схема САУ температурой воздуха в парнике элемент (усилитель с реле на выходе), РО- регулирующий орган (электронагреватель), у -управляемая величина (температура), g-задающее воздействие (требуемая температура);/-возмущающее воздействие (влияние внешних факторов на температуру воздуха в парнике).

Алгоритмические структурные схемы показывают взаимосвязь составных частей автоматической системы и характеризуют их динамические свойства. Эти схемы разрабатывают на основе функциональных или принципиальных схем автоматики. Алгоритмическая структурная схема - наиболее удобная графическая форма представления САУ в процессе исследования ее динамических свойств. В этой схеме не учитывают физическую природу воздействий и особенности конкретной аппаратуры, но отображают лишь математическую модель процесса управления.

На структурной схеме, как и на функциональной, элементы УУ и ОУ изображают в виде прямоугольников. При этом какое-либо устройство может быть представлено несколькими звеньями (прямоугольниками) и, наоборот, несколько однотипных устройств могут быть изображены как одно звено.

Разделение САУ на элементарные звенья направленного действия выполняют в зависимости от вида математического уравнения, связывающего выходную величину с входной для каждого звена. Внутри звена (прямоугольника) указывают математическую зависимость между входной и выходной величинами. Эта зависимость может быть представлена либо формулой, либо графиком, либо таблицей. Аналогично функциональной схеме связи между звеньями изображают в виде стрелок, указывающих направление и точки приложения воздействующих величин.

Структурная схема САУ температурой воздуха в парнике представлена на рисунке 1.21. Общий вид этой схемы совпадает с функциональной схемой (см. рис. 1.20), однако внутри прямоугольников содержатся функции или графики, связывающие выходные величины каждого элемента с входными.

В качестве примера рассмотрим принцип действия принципиальной электрической схемы САУ температурой теплоносителя в


Рис. 1.21.

Рис. 1.22.

/-заслонка; 2- ИМ; 3 ~усилитель

шахтной зерносушилке (рис. 1.22) и составим для нее функциональную схему. Требуемая температура теплоносителя в зерносушилке поддерживается при помощи заслонки 7, которая, поворачиваясь, изменяет соотношение притоков горячего воздуха Q r , поступающего из топки, и холодного Q x , забираемого из атмосферы. Температуру внутри зерносушилки измеряет термодатчик R, включенный в одно их плеч измерительного моста. Заданное значение управляемой величины g (температуры) устанавливают, перемещая движок резистора - задатчика R1. Поскольку сигнал выхода с измерительного моста малой мощности, то для управления реверсивным электродвигателем 2 (ИМ) используют усилитель 3.

Когда температура теплоносителя внутри зерносушилки отклоняется от заданной, на выходе моста появляется сигнал разбаланса, который через усилитель 3 и реле К1 или К2 поступает в электродвигатель 2, включая его. От двигателя приводится в действие заслонка 7, перемещающаяся в ту или иную сторону в зависимости от знака сигнала.

Вследствие инерционности термодатчика R, и его удаленности от заслонки 7 процесс управления может продолжаться бесконечно, т. е. новый равновесный режим в системе не установится. Действительно, когда заслонка займет новое равновесное положение, температура термодатчика еще некоторое время остается прежней, вследствие чего исполнительный механизм продолжит перемещать заслонку. Далее температура в месте установки термодатчика сначала сравняется с заданной, а затем отклонится от нее в противоположную сторону, т. е. примет значение с обратным знаком. Иными словами, в системе возникнут периодические колебания, называемые автоколебаниями. Автоколебания управляемой величины (температуры) в данной системе возникают вследствие того, что двигатель останавливается не в момент достижения заслонкой требуемого положения, а с некоторым запаздыванием.

Для устранения автоколебаний или уменьшения их амплитуды применяют обратную связь (ОС), которая позволяет остановить двигатель до того, как температура теплоносителя достигнет заданного значения, поскольку после прекращения перемещения заслонки температура объекта и термодатчика приближается к заданному значению.

Обратная связь осуществляется с помощью переменного резистора Ло. с, ползунок которого механически связан с ротором электродвигателя 2 и перемещается одновременно с ним. Очевидно, что равновесие в системе наступит в тот момент, когда приращение сопротивления Л ос, возникающее вследствие передвижения ползунка, и приращение сопротивления R„ вызванное изменением температуры теплоносителя, станут равны между собой (АД, с = ДЛ,). Таким образом, электродвигатель 2 в данной системе останавливается и переходный процесс полностью прекращается в тот момент, когда отклонение температуры станет меньше зоны нечувствительности регулятора.

На функциональной схеме (рис. 1.23) зерносушилка представляет собой объект управления (030, термодатчик - воспринимающий орган (50), измерительный мост - сравнивающий элемент (СО), усилитель - усилительный элемент (УЭ ), электродвигатель - исполнительный механизм (ИМ), заслонка - регулирующий орган (РО), между валом ИМ и ползунком потенциометра - обратная связь (ОС). Здесь же/- возмущающее воздействие (температура наружного воздуха, влажность и начальная температура зерна), g- задающее воздействие (требуемая температура сушки), у - управляемая величина (фактическая температура теплоносителя), и - управляющее воздействие (теплота, поступающая в зерносушилку с теплоносителем).


Рис. 1.23.

СХЕМЫ СОЕДИНЕНИЙ ЩИТОВ, ПУЛЬТОВ УПРАВЛЕНИЯ, ВНЕШНИХ СОЕДИНЕНИЙ И ПОДКЛЮЧЕНИЙ

Схемы соединений - это схемы, на которых изображают соединения составных частей устройства или внешние соединения между отдельными устройствами. Схемы для приборов, устанавливаемых в щитах или пультах управления, разрабатывают на основе функциональных схем, принципиальных электрических схем, схем питания, а также общих видов щитов и пультов.

Общие правила выполнения схем соединений следующие:

схемы соединений разрабатывают на один щит, пульт, станцию управления;

все типы аппаратов, приборов и арматуры, предусмотренные принципиальной электрической схемой, должны быть полностью отражены на схеме соединений;

позиционное обозначение приборов и средств автоматизации и маркировку участков цепей, принятые на принципиальной электрической схеме, необходимо сохранять в схеме соединений.

Применяют три способа составления схем соединений: графический, адресный и табличный. Для адресного и табличного способа, кроме перечисленных правил, следует соблюдать еще несколько:

приборы и аппараты на схемах соединений изображают упрощенно без соблюдения масштаба в виде прямоугольников, над которыми помещают окружность, разделенную горизонтальной чертой. Цифры над чертой указывают порядковый номер устройства (рис. 1.24, цифра 8); номера присваивают попанельно слева направо и сверху вниз), а под чертой - позиционное обозначение этого изделия (например, КТЗ)

при необходимости показывают внутреннюю схему аппаратов (рис. 1.24);

Рис. 1.24.

для нескольких реле, расположенных в одном ряду, внутреннюю схему показывают только один раз, если она у них одинаковая;

выводные зажимы приборов условно изображают окружностями, внутри которых указывают их заводскую маркировку (например, 1...8 на рис. 1.24). Если у выводных зажимов аппаратов заводской маркировки нет, то их маркируют условно арабскими цифрами и указывают это в поясняющей записи;

платам, на которых размещены диоды, триоды, резисторы и т. п., присваивают только порядковый номер (его проставляют в окружности под чертой);

позиционное обозначение элементов помещают в непосредственной близости от их условного графического изображения (рис. 1.25);

Рис. 1.2

если приборы и средства автоматизации располагаются на нескольких элементах конструкции щита или пульта (крышке, задней панели, дверце), то необходимо выполнить развертку этих конструкций в одну плоскость, соблюдая взаимное размещение приборов и средств автоматизации.

Графический способ заключается в том, что на чертеже условными линиями показывают все соединения между элементами аппаратов (рис. 1.26). Этот способ применяют только для щитов и пультов, относительно мало насыщенных аппаратурой. Схемы трубных проводок выполняют только графическим способом. Если на одном щите или пульте прокладывают трубы из разного материала (стальные, медные, пластмассовые), то и условные обозначения используют различные: сплошные линии, штриховые, штриховые-пунктирные с двумя точками и т. д.

Адресный («встречный») способ состоит в том, что линии связи между отдельными элементами аппаратов, установленных на щите или пульте, не изображают. Вместо этого у места присоединения провода на каждом аппарате или элементе проставляют цифровой или буквенно-цифровой адрес того аппарата или элемента, с которым он должен быть электрически связан (позиционное обозначение соответствует принципиальной электрической схеме или порядковому номеру изделия). При таком изображении


Рис. 1.26.


Рис. 1.27.

схемы чертеж не загромождается линиями связи и легко читается (рис. 1.27). Адресный способ выполнения схем соединений - основной и наиболее распространенный.

Табличный способ применяют в двух вариантах. Для первого составляют монтажную таблицу, где указывают номера каждой электрической цепи. В свою очередь, для каждой цепи последовательно перечисляют условные буквенно-цифровые обозначения всех приборов, аппаратов и их контактов, посредством которых эти цепи соединены (табл. 1.1). Так, для цепи 7запись обозначает, что зажим 6 прибора КМ1 соединяется с зажимом 4 прибора КМ2 , который, в свою очередь, должен быть соединен с зажимом 3 устройства КТ4.

1.1. Пример таблицы соединений

Номер цепи

Соединение

КМ 1 КМ2 КТ 4 6 4 3

КМ 4 XT 1 2 293

XTI HL1 КН2 XT 2 328 1 12 307

Второй вариант заполнения таблицы соединений отличается от первого тем, что в таблицу вписывают проводники по возрастанию номеров маркировки цепей принудительных электрических схем (табл. 1.2). Направление прокладки проводов, как и для первого варианта, записывают в виде дроби. Для более четкого распознавания проводников принято использовать дополнительные обозначения. Например, перемычку, выполняемую в аппарате, обозначают буквой «п».

1.2. Пример таблицы соединения проводов

Схемы подключений служат рабочими чертежами, по которым выполняют монтаж аппаратуры автоматики, поэтому их еще называют монтажными. Схемы, показывающие внешнее подключение аппаратов, установок, щитов, пультов и т. п., выполняют на основе функциональных и принципиальных схем питания, спецификации приборов и оборудования, а также чертежей производственных помещений с расположением технологического оборудования и трубопроводов.

Схемы подключений используют при монтаже проводов, при помощи которых установку, прибор, аппарат подключают к источникам питания, щитам, пультам и т. п.

На практике применяют два способа составления схем подключений: графический и табличный. Наиболее распространен графический.

На схемах подключений при помощи условных графических обозначений показывают: отборные устройства и первичные преобразователи; щиты, пульты и местные пункты управления, контроля, сигнализации и измерения; внещитовые приборы и средства автоматизации; соединительные, протяжные и свободные коробки; электропровода и кабели, проложенные вне щитов; узлы присоединения электропроводов к приборам, аппаратам, коробкам; запорную аппаратуру и элементы для соединений и ответвлений; коммутационные зажимы, расположенные вне щитов, защитное заземление. Шкафы, пульты, отдельные приборы и аппараты условно изображают в виде прямоугольников или кружков, внутри которых помещают соответствующие подписи.

Связи одного назначения на схемах подключений показывают сплошной линией и лишь в местах присоединения к приборам, исполнительным механизмам и другим аппаратам провода разделяют с целью маркировки. На линиях связи, обозначающих провода или кабели, указывают номер провода (подключение), марку, сечение и длину проводов и кабелей (если проводка выполнена в трубе, то необходимо также привести характеристику трубы). Провода подключений и кабели изображают линиями толщиной 0,4.. .1 мм.

Схемы подключений выполняют без соблюдения масштаба в виде, удобном для пользователя. Иногда схемы подключений представляют в виде таблиц, которые выполняют отдельно на каждую секцию (или панель) щита управления (табл. 1.3).

1.3. Пример таблицы подключений

Кабель, провод

Направление проводки

АСУ – аббревиатура, которая расшифровывается как Автоматизированные Системы Управления. Ответ на вопрос, что такое АСУ, можно сформулировать следующим образом: это совокупность технических систем и процессов, организационных комплексов и научных методов, которые позволяют обеспечить оптимальное управление сложным техническим процессом или объектом, а также коллективом людей, который имеет одну единую цель.

Вконтакте

Структурная схема АСУ

В структуре любой автоматизированной системы управления можно выделить следующие компоненты:

  1. Основная часть – включает в себя математическое и информационное обеспечение и техническую часть.
  2. Функциональна часть – подразумевает конкретные управленческие функции и ряд взаимосвязанных программ.

Системы могут быть элементарными или масштабными и сложными.

Принято различать две структурные разновидности таких систем - автоматизированная система управления техническим процессом (АСУТП) и система организационного управления (АСОУ).

Различия среди этих систем заключаются в характеристиках объекта, которым система будет управлять. АСУТП выстраиваются для управления сложными техническими объектами, механизмами, аппаратами, машинами. АСОУ призваны контролировать функционирование коллективы людей. Соответственно применению АСУ, будут различаться и способы передачи информации – это могут быть документы или разнообразные физические сигналы.

Существует также аббревиатура САУ – система автоматического управления. Её особенность заключается в том, что она некоторое время может действовать без вмешательства человека. Применяются такие системы для управления отельными небольшими объектами.

Применение и основные функции АСУ

АСУ нашли широкое применение в разнообразных сферах промышленного производства. Основные функции систем сводятся к следующему:

Основные принципы АСУ

Впервые принципы действия автоматизированных систем управления, порядок их разработки и создания были сформулированы В.М. Глушковым.

Информационная база АСУ

Информационной базой АСУ можно назвать всю совокупность информации, размещённой на машинных носителях и необходимых для нормального функционирования системы.

Как правило, вся информационная база подразделяется условно на три сектора – генеральный, производный и оперативный.

Технические характеристики АСУ

Под технической базой АСУ принято понимать все технические средства, которые применяют для сбора, накопления и обработки информации, а также для её отображения и передачи. Сюда же можно отнести и исполнительные узлы системы, которые воздействуют на объект управления.

Основные технические элементы и оборудование АСУ – это электронно-вычислительная техника, которая обеспечивает накопление и обработку всех данных, циркулирующих внутри системы. Такая техника позволяет моделировать производственные процессы и строить предложения для управления.

Для построения и управления АСУ применяются два типа электронно-вычислительной техники - учётно-регулирующий и информационно-расчётный.

Информационно-расчётное оборудование находится на высшей иерархической ступени в управленческой системе. Их задачей является решение всех вопросов, связанных с централизованным управлением объектом. Для таких механизмов характерно высокое быстродействие, наличие системы прерываний, переменная длина слова, слоговая обработка вводных данных.

Нижний уровень системы управления, как правило, отдаётся учётно-регулирующим механизмам и оборудованию. Эти механизмы, как правило, размещаются непосредственно на участках или в производственных цехах. В их задачу входит сбор вводных данных от объектов управления и первичная обработка этой информации с последующей передачей её в информационно-расчётное отделение и получением плановой директивной информации. Кроме того, учётно-регулирующая часть оборудования занимается локальными расчётами и вырабатывает управляющие воздействия на объекты управления в случае возникновения отклонений от расчётных функций. Эта часть системы управления имеет хорошо развитую связь с большим количеством источников информации и устройств регулирования.

Механические средства сбора и отображения информации

Если системой предусмотрен сбор и обработка информации с участием человека, в неё включаются различные регистраторы, которые позволяют получать исходные данные непосредственно с рабочих мест. Сюда же относятся всевозможные температурные датчики, таймеры, измерители количества произведённых деталей и прочее подобное оборудование. Монтируются также автоматические фиксаторы отклонений в производственном процессе, которые регистрируют и передают в систему сведения об отсутствии материалов, инструментария, транспортных средств для отправки изготовленных продуктов, а также неправильности в работе станков. Подобная аппаратура устанавливается не только в производственных помещениях, но и на складах для хранения сырья и готовой продукции.

К средствам отображения данных относятся все устройства, позволяющие вывести информацию в наиболее доступном для человека виде. Сюда относятся всевозможные мониторы, табло и экраны, печатающие устройства, терминалы, индикаторы и пр. Эти устройства связаны напрямую с центральным процессором вычислительной машины и могут выдавать информацию либо регламентировано, либо эпизодически – по запросу оператора или же в случае возникновения аварийной ситуации.

В состав технической базы автоматизированных систем управления входят также разнообразные виды оргтехники, контрольно-измерительные и учётные приборы, которые обеспечивают нормальное функционирование основных технических узлов.

В соответствии с требованиями к функционированию тепличного хозяйства с конвекционным теплообменом и системой орошения схему автоматизации технологического процесса выращивания сельхозпродукции в блочных стационарных теплицах можно представить в виде функциональной схемы автоматизации представленной на рис. 3.1.

На схеме автоматизации (см. рис. 3.1) приняты следующие обозначения:

  • 1 - Воздушная заслонка приточной вентиляции с электроприводом;
  • 2 - Циркуляционный вентилятор;
  • 3 - ТЭН;
  • 4 - Воздушная заслонка вытяжной вентиляции с электроприводом;
  • 5 - Электромагнитный клапан контура орошения;
  • 6 - Форсунки системы орошения (полива);
  • 7 - Датчик открывания дверей (или окон);
  • 8, 9 - Датчик влажности почвы;
  • 10 - Измеритель влажности и температуры воздуха.

На основании разработанной схемы автоматизации архитектуру системы управления целесообразно проектировать по трехуровневой схеме. На первом (нижнем) уровне обеспечивается сбор технологической информации с измерительных преобразователей и управление установленными по месту исполнительными механизмами и релейной автоматикой. Сигналы с измерительных преобразователей температуры и влажности обрабатываются программируемым логическим контроллером (ПЛК).

На основании разработанной схемы автоматизации архитектуру системы управления целесообразно проектировать по трехуровневой схеме. На первом (нижнем) уровне обеспечивается сбор технологической информации с измерительных преобразователей и управление установленными по месту исполнительными механизмами и релейной автоматикой. Сигналы с измерительных преобразователей температуры и влажности обрабатываются ПЛК. По заданному алгоритму управления режимом микроклимата формирует управляющие сигналы на исполнительные механизмы контуров управления. Второй уровень обеспечивает программное управление по заданному технологическому процессу выращивания сельскохозяйственной культуры с поста оператора. Программная система автоматически проверяет и контролирует температуру, уровень влажности в камере и на поверхности грунта при помощи сенсоров и клапана нагревательного трубопровода, а также системы увлажнения. К оборудованию данного уровня относится пульт управления и ПЛК, установленные в пультовой. Промышленный компьютер объединен сетью Profibus DP с распределенным оборудованием и подключен к локальному сегменту тепличного хозяйства по сети Ethernet на третьием уровне.

На третьем (верхнем) уровне осуществляется централизованная обработка информации о технологическом процессе на предприятия по сети Ethernet. Обработка информации включает контроль за ходом технологического процесса, расходом теплоносителя, протоколирование, архивирование и оперативный контроль.

Структурная схема автоматизированной системы управления технологическим процессом регулирования климатом внутри тепличной среды изображена на рис. 3.2.

Рисунок 3.1 -Автоматизированная система управления микроклиматом теплицы


Рисунок 3.2 - Структурная схема АСУ МКТ

СТРУКТУРНАЯ СХЕМА И ПРИНЦИП РАБОТЫ АСУ

Структурная схема линии приготовления маргарина, на которой показан её состав, включая исполнительные устройства и функционально важные элементы конструкции, приведена на рис. 1.

Рис. 1.

Процесс начинается с набора продукта на жировые весы из баков дезодорированного жира по 12 линиям и на водно-молочные весы по 4 линиям. Оператор вводит рецепты для обоих весов, то есть указывает, по какой линии и какое количество продукта должно быть набрано на весы. После того как набор на весы закончен, происходит последовательная перекачка жировых и водно-молочных компонентов в смеситель. Перекачка возможна только при пустом принимающем баке. Перекачка идёт до опорожнения весов. После этого начинается набор на весы другой партии компонентов. В смесителях происходят подогрев, равномерное перемешивание продукции и перекачка её в рабочий бак. Если в ходе перекачки уровень продукта в рабочем баке достигает 95%, процесс перекачки приостанавливается. Из рабочего бака продукт с помощью насоса высокого давления подаётся через охладитель, где происходит кристаллизация маргарина, и декристаллизатор на фасовочную машину.

СОСТАВЛЕНИЕ ФУНКЦИОНАЛЬНОЙ СХЕМЫ И ОПИСАНИЕ ОСНОВНЫХ ФУНКЦИОНАЛЬНЫХ УЗЛОВ АСУ

Рис. 2.

По структурным схемам (рис.1, 2) составим функциональную схему АСУ.


Рис. 3.

МП - микропроцессор; ЦАП - цифро-аналоговый преобразователь; К - клапан; Н - насос; СМ - смеситель; РБ - рабочий бак; ДУ - датчик уровня; ДД- датчик давления; ДТ- датчик температуры; ДВ - датчик веса; ДВЛ - датчик влажности; КМ - коммутатор; АЦП - аналого-цифровой преобразователь.

Рис. 4.

Используется в качестве устройства контроля за ТП.

Центральный процессор:

AMD Athlon 64 X2 6000+ BOX, ядро Windsor, частота 3000 МГц, Socket AM2, кеш L2 2048 Кб. Средний срок службы - 100000 ч.

Материнская плата:

Gigabyte GA-MA790X-DS4, AMD 790X, PCIe, PCI, 4x DDR2533/667/800, SLI/CrossFire. Средний срок службы - 70080 ч.

Жесткий диск: Seagate Barracuda ST3500320AS 500 Гб, SATA II, 7200 об./мин, 16МБ. Средний срок службы - 70080 ч.

Жидкокристаллический монитор:

Монитор 18,5" LCD Acer E-Machines E190HQVB, 16:9 HD, 5ms, 5000:1. Средний срок службы - 60000 ч.

2) Микропроцессор SIMATIC S7-300 - CPU 315-2 DP - PROFIBUS

Используется в качестве модуля центрального процессора.

Фирма: Siemens

Рис. 5. Микропроцессор SIMATIC S7-300 - CPU 315-2 DP - PROFIBUS

Характеристики:

1. Центральный процессор для выполнения программ среднего и большого объема.

2. Высокая производительность.

3. Встроенный интерфейс ведущего/ ведомого устройства PROFIBUS DP, обслуживание систем распределенного ввода-вывода на основе PROFIBUS DP; поддержка интерфейса MPI.

4. Рабочая встроенная память объемом 128 Кбайт, RAM (приблизительно 43 K инструкций); загружаемая память - ММС 8 МБайт.

5. Гибкие возможности расширения; подключение до 32 модулей S7-300 (4-рядная конфигурация).

6. Входное напряжение: 20.4 - 28.8 В; потребляемый ток: от источника питания - 800 мА, потребляемая мощность - 2,5 Вт.

7. ЦПУ/время выполнения: логических операций - 0,1 мкс, операций со словами - 0,2 мкс, арифметических операций с фиксированной точкой - 2 мкс, арифметических операций с плавающей точкой - 3 мкс.

8. Встроенные коммуникационные функции: PG/OP функции связи, обмен глобальными данными через MPI, функции стандартной S7 связи, S7 функции связи (только сервер)

9. Системные функции: центральный процессор поддерживает широкий спектр функций диагностики, настройки параметров, синхронизации, аварийной сигнализации, измерения временных промежутков и т.д.

10. Средний срок службы - 70080 ч.

3) Высокоскоростной ЦАП/АЦП c поддержкой SM 321

Используется в качестве преобразователя сигналов из аналогового в цифровой и наоборот.

Фирма: Siemens

Рис. 6. Высокоскоростной ЦАП/АЦП

Характеристики:

1. Кол-во входов - 32

2. Номинальное входное напряжение - DC 24V

3. Поканально программируемый коэффициент усиления

4. Автокалибровка

5. Общий потребляемый ток - 35 mА

6. Потребляемая мощность - 5,5W

7. Программируемая схема запуска

8. 16-разрядный счётчик (10 МГц)

9. Выходное напряжение 10 В

10. Средний срок службы - не менее 87600 ч.

4) Датчик температуры с унифицированным выходным сигналом Метран-280-1

Используется в качестве измерителя температуры смеси.

Фирма: Метран

Рис. 7. Датчик температуры

Характеристики:

1. Диапазон преобразуемых температур: -50…200 °С

2. Выходной сигнал 4-20 мА/HART

3. Цифровая передача информации по HART-протоколу

4. Дистанционные управление и диагностика

5. Гальваническая развязка входа от выхода

6. Повышенная защита от электромагнитных помех

7. Минимальный поддиапазон измерений: 25 °С

8. Электронный фильтр 50/60 Гц

9. Питание: 18 - 42 В постоянного тока

10. Мощность: 1,0 Вт

11. Межповерочный интервал - 1года

12. Средний срок службы - не менее 43800 ч.

5) Датчик уровня Rosemount 5300

Используется в качестве измерителя уровня заполнения в смесителе.

Фирма: Метран

Рис. 8. Датчик уровня

Характеристики:

1. Измеряемые среды: жидкие и сыпучие

2. Диапазон измерений: от 0,1 до 50 м

3. Выходные сигналы: 4F20 мА с цифровым сигналом на базе протокола HART или Foundation™ Fieldbus

4. Наличие взрывозащищенного исполнении

5. Рабочая температура: до 150°C (302°F)

6. Потребление тока в режиме ожидания: 21 мА

7. Давление процесса: от 0,1 до 34,5 МПа;

8. Относительная влажность окружающей среды: до 100%

9. Степень защиты от внешних воздействий: IP 66, IP67 по ГОСТ 14254

10. Межповерочный интервал - 1 год

11. Средний срок службы - 43800 ч.

6) Датчик давления Rosemount 2088

Используется в качестве измерителя давления в рабочем баке.

Фирма: Метран

автоматический функциональный технологический маргарин

Рис. 9.

Характеристики:

1. Верхние пределы измерений от 10,34 до 27579,2 кПа

2. Основная приведенная погрешность измерений ±0,075%; ±0,1%

3. Выходные сигналы 4D20 мА/НАRТ, 1D5 В/НАRТ, 0,8D3,2 В/НАRТ

4. Перенастройка диапазонов измерений 20:1

5. Дополнительно: ЖК индикатор, кронштейны, вентильные блоки

6. Диапазон температур окружающей среды от 40 до 85°С; измеряемой среды от 40 до 121°С

7. Время отклика датчика не более 300 мс

8. Нестабильность характеристик ±0,1% от Pmax за 1 год

11. Средний срок службы - 61320 ч.

7) Датчик веса Omron-D8M

Используется в качестве измерителя веса продукта в смесителе.

Фирма: Omron

Рис. 10.

Характеристики:

2. Цифровой выход

3. Рабочий диапазон температур -10…+120°С

4. Верхний предел измерения: 60 МПа:

5. Номинальное усилие: 200 Н

6. Полная приведенная погрешность, не более: 5%

7. Максимальный потребляемый ток, не более:

8. Сопротивление мостовой схемы входное, Ом - 450±25,0

9. Сопротивление мостовой схемы выходное, Ом - 400±4,0

10. Межповерочный интервал - 2 года

11. Средний срок службы - 52560 ч.

8) Датчик влажности Omron-4000-04

Используется в качестве измерителя влажности в рабочем баке.

Фирма: Omron

Рис. 11.

Характеристики:

1. Диапазон измеряемой относительной влажности: 0 - 100%

2. Выходной сигнал - напряжение

3. Время отклика - 15 с

4. Номинальный выходной ток - 0,05мА

5. Дипазон выходного напряжения: 0,8 - 3,9В

7. Корпус SIP 1.27 мм

8. Межповерочный интервал - 2 года

9. Средний срок службы - 43800 ч.

Используется в качестве исполнительного устройства для дозирования компонентов в системе.

Фирма: КЗМЭМ

Рис. 12.

Характеристики:

1. Тип корпуса - проходной, литой (латунь)

2. Рабочее давление: 0 - 0,1МПа

3. Присоединение муфтовое

5. Потребляемая мощность - 0,15Вт

6. Число срабатываний - не менее 500000

7. Время срабатывания - не более 1 с

8. Средний срок службы - 26280 ч.

Используется в качестве устройства для перекачки компонентов в системе.

Фирма: Grundfos

Рис. 13.

Характеристики:

1. Рабочий объем от 0,12 до 0,34 см 3 /об

2. Рабочее давление до 70 МПа

3. Частота вращения от 500 до 3600 об/мин

Используется в качестве устройства для смешивания компонентов в системе.

Фирма: «Воплощение»

Рис. 14.

Характеристики:

1. Масса - не более 215 кг

2. Рабочая вместимость бака - 156 л

3. Производительность техническая - не более 950 л/ч

4. Установленная мощность - не более 3 кВт

5. Частота - 50 Гц

6. Средний срок службы - 35040 ч.

12) Бак из нержавеющей стали

Используется в качестве устройства для приготовления продукта.

Фирма: Unical

Рис. 15.

Характеристики:

1. Объем бака - 300 л

2. Максимальная рабочая температура - 120 C

3. Максимально рабочее давление - 10 бар

4. Средний срок службы - 26280 ч.

Лекция 9

При разработке проекта автоматизации в первую очередь необходимо решить, с каких мест те или иные участки объекта будут управляться, где будут размещаться пункты управления, операторские помещения, какова должна быть взаимосвязь между ними, т.е. необходимо решить вопросы выбора структуры управления. Под структурой управления понимается совокупность частей автоматической системы, на которые она может быть разделена по определенному признаку, а также пути передачи воздействий между ними. Графическое изображение структуры управления называется структурной схемой. Хотя исходные данные для выбора структуры управления и ее иерархии с той или иной степенью детализации оговариваются заказчиком при выдаче задания на проектирование, полная структура управления должна разрабатываться проектной организацией.

В самом общем виде структурная схема системы автоматизации представлена на рисунке 9.1. Система автоматизации состоит из объекта автоматизации и системы управле­ния этим объектом. Благодаря определен­ному взаимодействию между объектом авто­матизации и системой управления система автоматизации в целом обеспечивает тре­буемый результат функционирования объек­та, характеризующийся параметрами х 1 х 2 …х n

Работа комплексного объекта автоматизации характеризуется рядом вспомогательных па­раметров у 1 , у 2 , ..., y j , которые также должны контролироваться и регулироваться.

В процессе работы на объект посту­пают возмущающие воздействия f 1 , f 2 , ...,f i , вызывающие отклонения параметров х 1 , х 2 , х n от их требуемых значений. Информа­ция о текущих значениях х 1 , х 2 , х n , y 1 , y 2 , y n поступает в систему управления и сравнивается с предписанными им значе­ниями g j , g 2 ,..., g k , в результате чего система управления вырабатывает управляющие воз­действия Е 1 , E 2 , ..., Е m для компенсации от­клонений выходных параметров.

Рисунок 9.1 – Структурная схема системы автоматизации

Выбор структуры управления объектом автоматизации оказывает существенное влияние на эффективность его работы, снижение относительной стоимости системы управления, ее надежности, ремонтоспособности и т.д.



В общем случае любая система может быть представлена:

· конструктивной структурой;

· функциональной структурой;

· алгоритмической структурой.

В конструктивной структуре системы каждая ее часть представляет собой самостоятельное конструктивное целое (рисунок 9.1).

В конструктивной схеме присутствуют:

· объект и система автоматизации;

· информационные и управляющие потоки.

В алгоритмической структуре каждая часть предназначена для выполнения определенного алгоритма преобразования входного сигнала, являющегося частью всего алгоритма функционирования системы.

Проектировщик разрабатывает алгоритмическую структурную схему (АСС) объекта автоматизации по дифференциальным уравнениям или графическим характеристикам. Объект автоматизации представляется в виде нескольких звеньев с различными передаточными функциями, соединенными между собой. В АСС отдельные звенья могут не иметь физической целостности, но соединение их (схема в целом) по статическим и динамическим свойствам, по алгоритму функционирования должно быть эквивалентно объекту автоматизации. На рисунке 9.2 дан пример АСС АСУ.

Рисунок 9.2 – Алгоритмическая структурная схема, представленная в виде простых звеньев

В функциональной структуре каждая часть предназначена для выполнения определенной функции.

В проектах автоматизации изображают конструктивные структурные схемы с элементами функциональных признаков. Полные сведения о функциональной структуре с указанием локальных контуров регулирования, каналов управления и технологического контроля приводятся в функцио­нальных схемах (лекция 10).

Структурная схема АСУ ТП разрабатывается на стадии “Проект” при двухстадийном проектировании и соответствует составу системы. В качестве примера на рисунке 9.3 приведена структурная схема управления серно-кислотным производством.

Рисунок 9.3 – Фрагмент структурной схемы управления и контроля серно-кислотным производством:

1 – линия связи с цеховой химической лабораторией; 2 – линия связи с пунктами контроля и управления кислотным участком; 3 – линия связи с пунктом контроля и управления III и IV технологическими линиями

На структурной схеме отображаются в общем виде основные решения проекта по функциональной, организационной и технической структурам АСУ ТП с соблюдением иерархии системы и взаимосвязей между пунктами контроля и управления, оперативным персоналом и технологическим объектом управления. Принятые при выполнении структурной схемы принципы организации оперативного управления технологическим объектом, состав и обозначения отдельных элементов структурной схемы должны сохраняться во всех проектных документах на АСУ ТП.

Таблица 9.1 – Функции АСУ ТП и их условные обозначения на рисунке 9.3

Условное обозначение Наименование
Контроль параметров Дистанционное управление технологическим оборудованием и исполнительными устройствами Измерительное преобразование Контроль и сигнализация состояния оборудования и отклонения параметров Стабилизирующее регулирование Выбор режима работы регуляторов и ручное управление задатчиками Ручной ввод данных Регистрация параметров Расчет технико-экономических показателей Учет производства и состав­ления данных за смену Диагностика технологических линий (агрегатов) Распределение нагрузок технологических линий (агрегатов) Оптимизация отдельных технологических процессов Анализ состояния технологического процесса Прогнозирование основных показателей производства Оценка работы смены Контроль выполнения плановых заданий Контроль проведения ремонтов Подготовка и выдача оперативной информации в АСУП Получение производственных ограничений и заданий от АСУП

На структурной схеме показывают следующие элементы:

1. технологические подразделения (отделения, участки, цеха, производства);

2. пункты контроля и управления (местные щиты, операторские и диспетчерские пункты, блочные щиты и т.д.);

3. технологический персонал (эксплуатационный) и дополнительные специальные службы, обеспечивающие оперативное управление;

4. основные функции и технические средства, обеспечивающие их реализацию в каждом пункте контроля и управления;

5. взаимосвязь между подразделениями и с вышестоящей АСУ.

Функции АСУ ТП шифруют и на схеме обозначают в виде чисел. Условные обозначения функций АСУТП на рисунке 9.3 приведены в таблице 9.1.

Структурная схема системы автоматизации выполняется по узлам и включает все элементы системы от датчика до регулирующего органа с указанием места расположения, показывая их взаимосвязи между собой.

Поделитесь с друзьями или сохраните для себя:

Загрузка...